"才聚鸢都·技能兴潍" 2020 年潍坊市职业技能大赛 焊工(学生组)理论复习题库

一、判断题(共200题)
1. 通常利用测定断弧长度来评定焊条的电弧稳定性。 () √
2. 碳当量法是用来判断材料焊接性的一种直接试验方法。 () ×
3. 碳当量的计算公式适用于一切金属材料。 () ×
4. 碳当量越高,材料的淬硬倾向越大,冷裂敏感性也越大。 () √
5. 奥氏体不锈钢的焊接性不能用碳当量来间接评定。 () √
6. 评定材料抗冷裂性最好的方法是热影响区最高硬度法,因为它考虑到
了氢和应力两个因素。 () ×
7. 采用斜Y形坡口焊接裂纹试验方法时,试验一定要在室温进行,试件不
得进行预热。() ×
8. 采用斜Y形坡口焊接裂纹试验方法时,焊后应立即进行检查,以避免产
生延迟裂纹。() ×
9. 采用斜Y形坡口焊接裂纹试验方法焊成的试件,其表面裂纹可用肉眼、
磁粉或着色法进行检验。 () ✓
10. 搭接接头(CTS)焊接裂纹试验方法主要适用于低合金钢焊接热影响区
由于马氏体转变而引起的裂纹试验。 () ✓
11. 进行搭接接头(CTS)焊接裂纹试验时,对焊接参数没有规定具体数值。
() ×
12. 由于搭接接头(CTS)焊接裂纹试验焊缝的冷却速度较慢,所以未能大量推广应用。() /
量推广应用。() √ 13. T形接头焊接裂纹试验方法主要适用于奥氏体不锈钢T形接头角焊缝的
13. 1 形 按 关 序 按 表 纹 瓜 验 力 伝 主 安 追 用
程. 插销试验可以用来评定焊接接头中各种形式的冷裂纹。 () ×
15. 进行插销试验的关键是插销的缺口尖端必须位于焊接热影响区的粗晶
$oxed{oxed}{oxed{oxed}{\mathbb{K}}_{\circ}}$ () \checkmark
16. 插销试验的优点之一是可以用临界应力值来定量地评定 材料对焊根
裂纹的敏感性。() √
17. 利用插销试验可以直接估计焊接结构中是否出现冷裂纹。 ()
×
18. 焊接热裂纹的直接试验方法是《压板对接(FISCO)焊接裂纹试验方法》。
$(\)$ \checkmark
19. 压板对接(FISCO)焊接裂纹试验方法一定要将弧坑填满,以免产生热
裂纹。() X
20. "焊接接头刚性拘束焊接裂纹试验方法"是一种专门用来测定材料产
生"焊接消除应力裂纹"的直接试验方法。() √

22. 影响层状撕裂敏感性的最好指标是伸长率,而不是断面收缩率。

21. 通常用"Z向(厚度方向)弯曲试验"作为评定钢材层状撕裂敏感性的

指标。() ×

- () X
- 23. 焊接裂纹在照相底片上常是一条中部稍宽、两端尖细的直线。() √
- 24. X射线照相时,通过物体的厚度越大,胶片的感光度越强,显影后得到的黑度越深。() ×
- 25. 射线探伤时, I级片和 II 级片中不允许存在条状夹渣。 ()×
- 26. 利用照相法进行射线探伤时,底片上缺陷的形状和大小与真实缺陷是 完全一样的。() ×
- 27. X射线和γ射线之所以能用来探伤,主要原因是这些射线在金属内部 能量会发生衰减。() √
- 28. 如果焊缝表面余高为零,则可以大大提高射线探伤的灵敏度。 ()×
- 29. 射线照相底片上的白色宽带表示焊缝,白色宽带中的黑色斑点或条纹 就表示焊接缺陷。() √
- 30. 根据国家标准GB3323—87《钢熔化焊对接接头射线照相和质量分级》的规定,钢焊缝射线探伤的质量标准共分四级,其中I级片质量最差,IV级片质量最好。 () ×
- 31. 射线探伤的I级片中,不允许存在任何焊接缺陷。 ()×
- 32. 只要焊缝中存在裂纹,焊缝经射线探伤后的底片就属于Ⅳ级。
- 33. γ射线可以用来探测比X射线更厚的金属。 () ×
- 34. 超声波探伤的基本原理是利用超声波进入金属内部会产生反射现象。 () ×
- 35. 超声波探伤的主要优点是能够清楚地显示焊缝内部缺陷的形状和大小。 () ×
- 36. 超声波探伤时,在探头和焊件之间必须充以耦合剂,否则超声波无法 进入焊件内部,在空气中都被反射掉了。 () √
- 37. 与射线探伤相比,由于超声波对人体有害,所以没有射线探伤应用得广。()×
- 38. 根据GB11345—89《钢焊缝手工超声波探伤方法和探伤结果分级》的规定,焊缝质量等级分四级,其中I级质量最好,Ⅳ级最差。 ()
- 39. 不论是焊缝表面的缺陷,还是焊缝内部的缺陷,磁粉探伤都是非常灵敏的。() √
- 40. ICr18Ni9Ti 奥氏体不锈钢焊缝表面和近表面的缺陷采用磁粉探伤检测最合适。() ×
- 41. 渗透探伤可以用来探测非铁磁性材料焊缝表面和近表面的缺陷。 () √
- 42. 焊接接头拉伸试验的目的是测定焊缝的抗拉强度。 ()×
- 43. 弯轴直径越大,弯曲试验的合格率越高。 () √
- 44. 厚度较大的焊件,进行弯曲试验时最好选择侧弯。 () √
- 45. 不论是双面焊,还是单面焊,只要是同一种材料,其弯曲试验的弯曲角度都是一样的。() ×
- 46. 如果要测量焊缝的冲击韧度,其冲击试样的缺口应该在紧靠焊缝的热

影响区上。() ×
47. 进行硬度试验时,如果在测点处出现焊接缺陷,试验结果仍有效。
() X
48. 测定板状对接接头试件塑性最好的试验方法是压扁试验。 ()
X
49. 钢制压力容器水压试验的试验压力应为工作压力的1. 25倍。 (
✓
50. 水压试验的试验压力和容器的壁温无关。 () ×
51. 对焊后需要无损检验或回火消除应力热处理的容器,应先进行水压试
验。()×
52. 气压试验比水压试验有较大的安全性, 所以应用十分广泛。 ()
53. 水压试验可以清楚显示焊缝内部的缺陷。 () ×
54. 煤油试验属于密封性检验。 () √
55.12Cr1MoV钢和20钢焊条电弧焊时,可以选用E5015焊条。 () ✓
56. 珠光体耐热钢与低合金结构钢焊接时,应该根据珠光体耐热钢的化学
成分来选择相应的焊接材料。 () ×
57. 由于珠光体耐热钢含有较多的合金元素,所以珠光体耐热钢和低合金
结构钢焊接时,应采用较大的熔合比,即使焊缝金属中含有较多的珠
光体耐热钢。() ×
58. 奥氏体不锈钢与珠光体耐热钢焊接时,由于珠光体耐热钢的稀释作用,
焊缝可能会出现马氏体组织。 () √
59. 奥氏体不锈钢与珠光体耐热钢焊接时,熔合比越大越好。 ()
X co. 10.10V:0m:南叶从 <i>丁</i> 籽短知000F A.K.地丰短旧校时,45.8150招
60. 1Cr1SNi9Ti奥氏体不锈钢和Q235—A低碳素钢焊接时,如果采用钨极
氩弧焊,则最好不要加填充焊丝,才能获得满意的焊缝质量。
() X C1 南氏体无矫韧和低端表规矩按时,应用具多的框接之法具框多由弧框。
61. 奥氏体不锈钢和低碳素钢焊接时,应用最多的焊接方法是焊条电弧焊。 () √
(
02. 1C116N1911 英 C 体 介 拐 枘 和 Q235
63. ICr18Ni9Ti 奥氏体不锈钢和12Cr1MoV珠光体耐热钢焊接时,应该选用
65. 1CI 16N1 91 1 英
64. 奥氏体不锈钢与珠光体耐热钢的焊接接头中会产生很大的热应力,这
种热应力可以通过高温回火加以消除。 () ×
65. 珠光体耐热钢中含碳量越高,奥氏体不锈钢与珠光体耐热钢的焊接接
3. 块几体间然树中音恢量感同,类尺体不妨树与块几体间然树的样接接 头中形成扩散层的可能性越大。 () √
66. 奥氏体不锈钢与珠光体耐热钢焊接时,最好选用稳定珠光体钢的焊接
14 17 0 / / Y

)

- 67. 奥氏体不锈钢与珠光体耐热钢焊接时,最好采用多层焊,并且层数越 多越好,其目的是可以提高焊接接头的塑性。 () √ 68. 奥氏体不锈钢与珠光体耐热钢焊接时,应采用较大的坡口角度,以减
- 少熔合比。() √
- 69. 采用小直径焊条(或焊丝),使用小电流、高电压、快速焊是焊接奥氏

70.	珠光体耐热钢与马氏体钢焊接时,最好选用奥氏体不锈钢焊条	0
() ×	
71.	增加奥氏体不锈钢中的含镍量,可以减弱奥氏体钢与珠光体钢焊接 头中的扩散层。() √	接
72.	钢与铜及其合金焊接时的主要问题是在焊缝及熔合区容易产生裂约	文 a
() \(\)	
73.	钢与铜及其合金焊接时,焊缝中产生的裂纹属于热裂纹。 ()
\checkmark		
74.	钢与铜及其合金焊接时,随着焊缝中含铜量的增加,产生热裂纹的 向也加大。() √	倾
75.	钢与铜及其合金焊接时,热影响区形成的裂纹叫渗透裂纹,它不属	干
	冷裂纹。() √	•
76.	钢与铜及其合金焊接时, 所产生的渗透裂纹的长度只决定于焊接应	力
	的大小,和焊缝的化学成分无关。 () ×	
77.	纯铜与Q235-A低碳素钢焊接时,可采用E4303焊条。 ()	\checkmark
78.	奥氏体不锈钢与铜及其合金焊接时,应该采用奥氏体不锈钢作为填	充
	材料。() ×	
	钢与镍及其合金焊接时,焊缝中含氧量越高,产生气孔的倾向越力	ζ.
	铁镍焊缝中,含Mn、Ti、A1等合金元素时,产生气孔的倾向增加。()
X	地 柏阳极击 <u>秦柏目共产,</u> 安山共和 <i>凤岭州城</i> 与共土 ()	,
81.		√
82. 83.	铁镍焊缝中,含氧量越高,产生热裂纹的倾向越小。 () > 纯镍与低碳素钢焊接时,焊缝中的含镍量越高,焊缝的塑性和韧度	土 化
oo. 低。	组保与LLW系机序按问,序建中的占保里越同,序建的至住和初及 () X	咫
	纯镍与低碳素钢复合板焊接时,应先焊低碳素钢基层焊缝,后焊镍	覌
01.		1女
85.	焊接接头是一个成分、组织和性能都不一样的不均匀体。)
√	The state of the s	,
86.	焊缝金属的力学性能和焊接热输入无关。 () ×	
87.	焊接热影响区内塑性最好的区段是粗晶区。()×	
88.	当低合金结构钢中含有较多的氮时, 极易发生热应变脆化现象	0
() √	
	承受动载荷的角焊缝,其焊缝表面形状最好是凸形的。 ()	
	T形接头只要保证其角焊缝能圆滑过渡,就是最理想的接头形式	0
() X	
	斜缝对接接头由于浪费金属材料,目前已很少采用。 ()	
92.	搭接接头由于钢板之间连接的面积较多,所以是一种强度较高的接	头
0.0	形式。() ×	
	为增大搭接接头的强度,可以采用塞焊的形式。 () √	
	只有单面角焊缝的T形接头,其承载能力较低。() √ 对接接头的应力集中主要产生在焊趾处。 () √	
	增加对接接头的强度,主要应该增大焊缝的余高。 () ×	
gU.	恒 JM AN 按 按 去 的 独 反, 土 女 应 以 恒 人 杆 廷 的 末 同 。 (

体钢与珠光体耐热钢的主要工艺措施。 () √

× 98. 所有焊接接头中,以对接接头的应力集中最小。 () ✓ 99. 开坡口焊接可以降低T形接头的应力集中。 () ✓ 100. 为降低应力集中,在搭接接头中最好不要焊接正面角焊缝。 () × 101. 由于搭接接头不是焊接结构的理想接头,故很少采用。 () × 102. 承受静载荷的结构,应力集中对其强度无显著影响。 () ✓ 103. 焊接结构的整体性给焊接裂纹的扩展创造了十分有利的条件。 () × 104. 大部分焊接结构的失效是由气孔所引起的。 () × 105. 塑性好的材料只会产生延性断裂,不会产生脆性断裂。 () × 106. 脆性断裂一般都在应力不高于结构设计应力时产生,具有突然破坏的性质。() × 107. 延性断裂的断口有金属光泽。 () × 108. 脆性断裂由一有金属光泽。 () × 109. 焊接结构中的裂纹是产生脆性断裂的重要原因。 () × 109. 焊接结构的断裂形式只与所受应力的大小有关,而与应力的状态无关。 () × 111. 焊接结构的断裂形式只与所受应力的大小有关,而与应力的状态无关。 () × 112. 脆断事故一般都起源于具有严重应力集中效应的缺口处。 () ✓ 113. 脆性转变温度越低,材料的脆性倾向越严重。 () × 114. 带缺口的试样,其脆性转变温度比光滑试样高。 () ✓ 115. 同一种材料,在高温时容易产生延性断裂,在低温时容易产生脆性断裂。 () ✓ 116. 提高加载速度能促使材料发生脆性破坏,其作用相当于降低温度。
99. 开坡口焊接可以降低T形接头的应力集中。 () ✓ 100. 为降低应力集中,在搭接接头中最好不要焊接正面角焊缝。 () × 101. 由于搭接接头不是焊接结构的理想接头,故很少采用。 () × 102. 承受静载荷的结构,应力集中对其强度无显著影响。 () ✓ 103. 焊接结构的整体性给焊接裂纹的扩展创造了十分有利的条件。 () × 104. 大部分焊接结构的失效是由气孔所引起的。 () × 105. 塑性好的材料只会产生延性断裂,不会产生脆性断裂。 () × 106. 脆性断裂一般都在应力不高于结构设计应力时产生,具有突然破坏的性质。() × 107. 延性断裂的断口有金属光泽。 () × 108. 脆性断裂由于很少产生,所以其危害性是不大的, () × 109. 焊接结构中的裂纹是产生脆性断裂的重要原因。 () × 110. 当材料处于三向拉伸应力的作用下,往往容易发生脆性断裂。 () ✓ 111. 焊接结构的断裂形式只与所受应力的大小有关,而与应力的状态无关。 () × 112. 脆断事故一般都起源于具有严重应力集中效应的缺口处。 () ✓ 113. 脆性转变温度越低,材料的脆性倾向越严重。 () × 114. 带缺口的试样,其脆性转变温度比光滑试样高。 () ✓ 115. 同一种材料,在高温时容易产生延性断裂,在低温时容易产生脆性断裂。 () ✓
100. 为降低应力集中,在搭接接头中最好不要焊接正面角焊缝。() × 101. 由于搭接接头不是焊接结构的理想接头,故很少采用。 () × 102. 承受静载荷的结构,应力集中对其强度无显著影响。 () √ 103. 焊接结构的整体性给焊接裂纹的扩展创造了十分有利的条件。 () × 104. 大部分焊接结构的失效是由气孔所引起的。 () × 105. 塑性好的材料只会产生延性断裂,不会产生脆性断裂。 () × 106. 脆性断裂一般都在应力不高于结构设计应力时产生,具有突然破坏的性质。() ✓ 107. 延性断裂的断口有金属光泽。 () × 108. 脆性断裂由于很少产生,所以其危害性是不大的, () × 109. 焊接结构中的裂纹是产生脆性断裂的重要原因。 () ✓ 110. 当材料处于三向拉伸应力的作用下,往往容易发生脆性断裂。 () ✓ 111. 焊接结构的断裂形式只与所受应力的大小有关,而与应力的状态无关。 () × 112. 脆断事故一般都起源于具有严重应力集中效应的缺口处。 () ✓ 113. 脆性转变温度越低,材料的脆性倾向越严重。 () × 114. 带缺口的试样,其脆性转变温度比光滑试样高。 () ✓ 115. 同一种材料,在高温时容易产生延性断裂,在低温时容易产生脆性断裂。 () ✓
() × 101. 由于搭接接头不是焊接结构的理想接头,故很少采用。 () × 102. 承受静载荷的结构,应力集中对其强度无显著影响。 () ✓ 103. 焊接结构的整体性给焊接裂纹的扩展创造了十分有利的条件。 () ✓ 104. 大部分焊接结构的失效是由气孔所引起的。 () × 105. 塑性好的材料只会产生延性断裂,不会产生脆性断裂。 () × 106. 脆性断裂一般都在应力不高于结构设计应力时产生,具有突然破坏的性质。() ✓ 107. 延性断裂的断口有金属光泽。 () × 108. 脆性断裂由于很少产生,所以其危害性是不大的, () × 109. 焊接结构中的裂纹是产生脆性断裂的重要原因。 () ✓ 110. 当材料处于三向拉伸应力的作用下,往往容易发生脆性断裂。 () ✓ 111. 焊接结构的断裂形式只与所受应力的大小有关,而与应力的状态无关。 () × 112. 脆断事故一般都起源于具有严重应力集中效应的缺口处。 () ✓ 113. 脆性转变温度越低,材料的脆性倾向越严重。 () × 114. 带缺口的试样,其脆性转变温度比光滑试样高。 () ✓ 115. 同一种材料,在高温时容易产生延性断裂,在低温时容易产生脆性断裂。 () ✓
101. 由于搭接接头不是焊接结构的理想接头,故很少采用。 () × 102. 承受静载荷的结构,应力集中对其强度无显著影响。 () √ 103. 焊接结构的整体性给焊接裂纹的扩展创造了十分有利的条件。 () × 104. 大部分焊接结构的失效是由气孔所引起的。 () × 105. 塑性好的材料只会产生延性断裂,不会产生脆性断裂。 () × 106. 脆性断裂一般都在应力不高于结构设计应力时产生,具有突然破坏的性质。() ✓ 107. 延性断裂的断口有金属光泽。 () × 108. 脆性断裂由于很少产生,所以其危害性是不大的, () × 109. 焊接结构中的裂纹是产生脆性断裂的重要原因。 () ✓ 110. 当材料处于三向拉伸应力的作用下,往往容易发生脆性断裂。 () ✓ 111. 焊接结构的断裂形式只与所受应力的大小有关,而与应力的状态无关。 () × 112. 脆断事故一般都起源于具有严重应力集中效应的缺口处。 () ✓ 113. 脆性转变温度越低,材料的脆性倾向越严重。 () × 114. 带缺口的试样,其脆性转变温度比光滑试样高。 () ✓ 115. 同一种材料,在高温时容易产生延性断裂,在低温时容易产生脆性断裂。 () ✓
102. 承受静载荷的结构,应力集中对其强度无显著影响。 () ✓ 103. 焊接结构的整体性给焊接裂纹的扩展创造了十分有利的条件。 () ✓ 104. 大部分焊接结构的失效是由气孔所引起的。 () × 105. 塑性好的材料只会产生延性断裂,不会产生脆性断裂。 () × 106. 脆性断裂一般都在应力不高于结构设计应力时产生,具有突然破坏的性质。() × 107. 延性断裂的断口有金属光泽。 () × 108. 脆性断裂由于很少产生,所以其危害性是不大的, () × 109. 焊接结构中的裂纹是产生脆性断裂的重要原因。 () ✓ 110. 当材料处于三向拉伸应力的作用下,往往容易发生脆性断裂。 () ✓ 111. 焊接结构的断裂形式只与所受应力的大小有关,而与应力的状态无关。 () × 112. 脆断事故一般都起源于具有严重应力集中效应的缺口处。 () ✓ 113. 脆性转变温度越低,材料的脆性倾向越严重。 () × 114. 带缺口的试样,其脆性转变温度比光滑试样高。 () ✓ 115. 同一种材料,在高温时容易产生延性断裂,在低温时容易产生脆性断裂。 () ✓
103. 焊接结构的整体性给焊接裂纹的扩展创造了十分有利的条件。() ✓ 104. 大部分焊接结构的失效是由气孔所引起的。 () × 105. 塑性好的材料只会产生延性断裂,不会产生脆性断裂。 () × 106. 脆性断裂一般都在应力不高于结构设计应力时产生,具有突然破坏的性质。() × 107. 延性断裂的断口有金属光泽。 () × 108. 脆性断裂由于很少产生,所以其危害性是不大的, () × 109. 焊接结构中的裂纹是产生脆性断裂的重要原因。 () ✓ 110. 当材料处于三向拉伸应力的作用下,往往容易发生脆性断裂。 () ✓ 111. 焊接结构的断裂形式只与所受应力的大小有关,而与应力的状态无关。 () × 112. 脆断事故一般都起源于具有严重应力集中效应的缺口处。 () ✓ 113. 脆性转变温度越低,材料的脆性倾向越严重。 () × 114. 带缺口的试样,其脆性转变温度比光滑试样高。 () ✓ 115. 同一种材料,在高温时容易产生延性断裂,在低温时容易产生脆性断裂。 () ✓
√ 104. 大部分焊接结构的失效是由气孔所引起的。
104. 大部分焊接结构的失效是由气孔所引起的。 () × 105. 塑性好的材料只会产生延性断裂,不会产生脆性断裂。 () × 106. 脆性断裂一般都在应力不高于结构设计应力时产生,具有突然破坏的性质。() × 107. 延性断裂的断口有金属光泽。 () × 108. 脆性断裂由于很少产生,所以其危害性是不大的, () × 109. 焊接结构中的裂纹是产生脆性断裂的重要原因。 () √ 110. 当材料处于三向拉伸应力的作用下,往往容易发生脆性断裂。 () √ 111. 焊接结构的断裂形式只与所受应力的大小有关,而与应力的状态无关。 () × 112. 脆断事故一般都起源于具有严重应力集中效应的缺口处。 () √ 113. 脆性转变温度越低,材料的脆性倾向越严重。 () × 114. 带缺口的试样,其脆性转变温度比光滑试样高。 () √ 115. 同一种材料,在高温时容易产生延性断裂,在低温时容易产生脆性断裂。 () √
105. 塑性好的材料只会产生延性断裂,不会产生脆性断裂。 () × 106. 脆性断裂一般都在应力不高于结构设计应力时产生,具有突然破坏的性质。() √ 107. 延性断裂的断口有金属光泽。 () × 108. 脆性断裂由于很少产生,所以其危害性是不大的, () × 109. 焊接结构中的裂纹是产生脆性断裂的重要原因。 () √ 110. 当材料处于三向拉伸应力的作用下,往往容易发生脆性断裂。 () √ 111. 焊接结构的断裂形式只与所受应力的大小有关,而与应力的状态无关。 () × 112. 脆断事故一般都起源于具有严重应力集中效应的缺口处。 () √ 113. 脆性转变温度越低,材料的脆性倾向越严重。 () × 114. 带缺口的试样,其脆性转变温度比光滑试样高。 () √ 115. 同一种材料,在高温时容易产生延性断裂,在低温时容易产生脆性断裂。 () √
106. 脆性断裂一般都在应力不高于结构设计应力时产生,具有突然破坏的性质。() ✓ 107. 延性断裂的断口有金属光泽。 () × 108. 脆性断裂由于很少产生,所以其危害性是不大的, () × 109. 焊接结构中的裂纹是产生脆性断裂的重要原因。 () ✓ 110. 当材料处于三向拉伸应力的作用下,往往容易发生脆性断裂。 () ✓ 111. 焊接结构的断裂形式只与所受应力的大小有关,而与应力的状态无关。 () × 112. 脆断事故一般都起源于具有严重应力集中效应的缺口处。 () ✓ 113. 脆性转变温度越低,材料的脆性倾向越严重。 () × 114. 带缺口的试样,其脆性转变温度比光滑试样高。 () ✓ 115. 同一种材料,在高温时容易产生延性断裂,在低温时容易产生脆性断裂。 () ✓
的性质。() ✓ 107. 延性断裂的断口有金属光泽。 () × 108. 脆性断裂由于很少产生,所以其危害性是不大的, () × 109. 焊接结构中的裂纹是产生脆性断裂的重要原因。 () ✓ 110. 当材料处于三向拉伸应力的作用下,往往容易发生脆性断裂。 () ✓ 111. 焊接结构的断裂形式只与所受应力的大小有关,而与应力的状态无关。 () × 112. 脆断事故一般都起源于具有严重应力集中效应的缺口处。 () ✓ 113. 脆性转变温度越低,材料的脆性倾向越严重。 () × 114. 带缺口的试样,其脆性转变温度比光滑试样高。 () ✓ 115. 同一种材料,在高温时容易产生延性断裂,在低温时容易产生脆性断裂。 () ✓
107. 延性断裂的断口有金属光泽。 () × 108. 脆性断裂由于很少产生,所以其危害性是不大的, () × 109. 焊接结构中的裂纹是产生脆性断裂的重要原因。 () √ 110. 当材料处于三向拉伸应力的作用下,往往容易发生脆性断裂。 () √ 111. 焊接结构的断裂形式只与所受应力的大小有关,而与应力的状态无关。 () × 112. 脆断事故一般都起源于具有严重应力集中效应的缺口处。 () √ 113. 脆性转变温度越低,材料的脆性倾向越严重。 () × 114. 带缺口的试样,其脆性转变温度比光滑试样高。 () √ 115. 同一种材料,在高温时容易产生延性断裂,在低温时容易产生脆性断裂。 () √
108. 脆性断裂由于很少产生,所以其危害性是不大的, () × 109. 焊接结构中的裂纹是产生脆性断裂的重要原因。 () √ 110. 当材料处于三向拉伸应力的作用下,往往容易发生脆性断裂。 () √ 111. 焊接结构的断裂形式只与所受应力的大小有关,而与应力的状态无关。 () × 112. 脆断事故一般都起源于具有严重应力集中效应的缺口处。 () √ 113. 脆性转变温度越低,材料的脆性倾向越严重。 () × 114. 带缺口的试样,其脆性转变温度比光滑试样高。 () √ 115. 同一种材料,在高温时容易产生延性断裂,在低温时容易产生脆性断裂。 () √
109. 焊接结构中的裂纹是产生脆性断裂的重要原因。 () ↓ 110. 当材料处于三向拉伸应力的作用下,往往容易发生脆性断裂。 () ↓ 111. 焊接结构的断裂形式只与所受应力的大小有关,而与应力的状态无关。 () × 112. 脆断事故一般都起源于具有严重应力集中效应的缺口处。 () ↓ ↓ 113. 脆性转变温度越低,材料的脆性倾向越严重。 () × 114. 带缺口的试样,其脆性转变温度比光滑试样高。 () ↓ 115. 同一种材料,在高温时容易产生延性断裂,在低温时容易产生脆性断裂。 () ↓
110. 当材料处于三向拉伸应力的作用下,往往容易发生脆性断裂。 () ↓ 111. 焊接结构的断裂形式只与所受应力的大小有关,而与应力的状态无关。 () × 112. 脆断事故一般都起源于具有严重应力集中效应的缺口处。 () ↓ ↓ 113. 脆性转变温度越低,材料的脆性倾向越严重。 () × 114. 带缺口的试样,其脆性转变温度比光滑试样高。 () ↓ 115. 同一种材料,在高温时容易产生延性断裂,在低温时容易产生脆性断裂。 () ↓
√ 111. 焊接结构的断裂形式只与所受应力的大小有关,而与应力的状态无关。() × 112. 脆断事故一般都起源于具有严重应力集中效应的缺口处。 () √ 113. 脆性转变温度越低,材料的脆性倾向越严重。 () × 114. 带缺口的试样,其脆性转变温度比光滑试样高。 () √ 115. 同一种材料,在高温时容易产生延性断裂,在低温时容易产生脆性断裂。() √
111. 焊接结构的断裂形式只与所受应力的大小有关,而与应力的状态无关。() × 112. 脆断事故一般都起源于具有严重应力集中效应的缺口处。 () √ 113. 脆性转变温度越低,材料的脆性倾向越严重。 () × 114. 带缺口的试样,其脆性转变温度比光滑试样高。 () √ 115. 同一种材料,在高温时容易产生延性断裂,在低温时容易产生脆性断裂。() √
关。() × 112. 脆断事故一般都起源于具有严重应力集中效应的缺口处。 () √ 113. 脆性转变温度越低,材料的脆性倾向越严重。 () × 114. 带缺口的试样,其脆性转变温度比光滑试样高。 () √ 115. 同一种材料,在高温时容易产生延性断裂,在低温时容易产生脆性断裂。() √
112. 脆断事故一般都起源于具有严重应力集中效应的缺口处。 () √ 113. 脆性转变温度越低,材料的脆性倾向越严重。 () × 114. 带缺口的试样,其脆性转变温度比光滑试样高。 () √ 115. 同一种材料,在高温时容易产生延性断裂,在低温时容易产生脆性断裂。 () √
√ 113. 脆性转变温度越低,材料的脆性倾向越严重。 () × 114. 带缺口的试样,其脆性转变温度比光滑试样高。 () √ 115. 同一种材料,在高温时容易产生延性断裂,在低温时容易产生脆性 断裂。 () √
113. 脆性转变温度越低,材料的脆性倾向越严重。 () × 114. 带缺口的试样,其脆性转变温度比光滑试样高。 () √ 115. 同一种材料,在高温时容易产生延性断裂,在低温时容易产生脆性断裂。 () √
114. 带缺口的试样,其脆性转变温度比光滑试样高。 () ✓ 115. 同一种材料,在高温时容易产生延性断裂,在低温时容易产生脆性 断裂。 () ✓
115. 同一种材料,在高温时容易产生延性断裂,在低温时容易产生脆性断裂。() √
断裂。()√
116 提高加载速度能促使材料发生脆性破坏。其作用相当于降低温度。
$($ $)$ \checkmark
117. 低碳素钢和低合金结构钢的晶粒度越细,其脆性转变温度越高。
() X
118. 材料的化学成分对脆性转变温度没有什么影响。 () ×
119. 厚板的缺口处容易使材料变脆。 () √
120. 用常规方法测定的强度和塑性指标都符合要求的材料,所制造的结
构一般不会发生脆性断裂。 () ×
121. 通常可以用脆性转变温度作为标准来评定材料的脆性一韧性行为。
() √
122. 利用冲击试验可以测定材料的脆性转变温度。 () √
123. 落锤试验法可以用简单的设备来测定材料脆性转变温度。 ()
√
124. 焊接结构由于刚度大, 所以不容易产生脆性断裂。 () ×
125. 焊接结构焊前的冷加工对结构产生脆性断裂不会带来任何影响。
() X
126. 焊接结构在长期高温应力作用下,也容易产生脆性断裂。 ()

\checkmark			
127. √	材料的热应变脆化是引起焊接结构脆性断裂的原因之一。	()
128.	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7)	×
129.			
130.	如果焊接缺陷产生在结构的应力集中区,则其对脆断的影响	是不	、大
的。	() X		
131.	焊接缺陷中除裂纹外,其它缺陷对脆性断裂没有什么影响。	(,
\times			
132.	对于塑性较低的高强度钢,焊接接头的角变形和错边对脆性较大的影响。() √	断系	見有
133	材料在其脆性转变温度以上工作时,焊接残余应力对其脆性	紙 泵	具有
	较大影响。() ×		
	如果焊接残余应力为拉伸应力,和工作应力叠加时,容易引产生脆性断裂。() √	起结	5构
	为防止脆性断裂,焊接结构使用的材料应具有较好的韧性。	(,
√	73/7 II WA III WA II WA	`	•
136.	采用比实际强度更高的材料是防止焊接结构产生脆性断裂的	重男	見措
施。	() X		, 111
137.		向北	1.较
大。	() √	, , _	3 1/2
138.			
139.		容易	引产
140.			
141.	对接接头焊缝的余高值越大,其疲劳强度越高。()×		
142.			
143.	提高T形接头疲劳强度的根本措施是开坡口焊接和加工焊缝定	十 油	L.
140.	使之圆滑过渡。() √	工 1/又	<u>,</u>
1 1 1	搭接接头由于连接处的钢板厚度增加,所以其疲劳强度是比较	声 似	' 1
		同口:	J •
`)× 采用"加强"盖板的对接接头,其疲劳强度是最高的。 (`	~
140.	低碳素钢、低合金结构钢焊接接头热影响区力学性能的变化 强度影响不大。() √	刈涉	も労
147.	焊接残余应力将降低焊接结构的疲劳强度。 () √		
148.	降低焊接接头和结构疲劳强度的主要因素是应力集中。 ()	\checkmark
149.	沿垂直力线方向打磨焊缝可以提高对接接头的疲劳强度。	(,
×			
	用电弧整形法提高高强度钢焊接接头的疲劳强度有较好的效果	₹ 。	()
√ 1.5.1		,	
	由于热应力反复作用而产生的破坏称为热疲劳。 ()		La 1
	在腐蚀介质中工作的构件,即使承受循环载荷,也不会产生	疲克	<i>ī</i> 破
•	() ×		
153.	为了分析结构失效的原因,应将破裂断口很好地保存。 ()	\checkmark

154. 焊接工艺评定的主要目的是测定材料焊接性能的好坏。 () × 155. 焊接工艺评定和产品焊接,试板都能反映焊接接头的力学性能,所 以两者的意义是一样的。
() X 156. 钢制压力容器焊接工艺评定试件可以不做硬度试验。 (157. 焊接工艺评定的对象是焊缝而不是焊接接头。 () √ 158. 对接焊缝试件进行焊接工艺评定时,可以不做无损检验。 (159. 进行焊接工艺评定时,板状对接焊缝试件和管材对接焊缝试件,两 者不能通用,应分别进行。 ()× 160. 对接焊缝和角焊缝应分别进行焊接工艺评定。 () × 161. 焊接工艺评定一定要由考试合格的焊工担任施焊工作。 () × 162. 为了保证焊接工艺评定工作顺利进行,可以聘请外单位技术熟练的 焊工担任施焊工作。()× 163. 当同一条焊缝使用两种或两种以上焊接方法时,可按每种焊接方法 分别进行评定。() √ 164. 当同一条焊缝使用两种或两种以上焊接方法时,可使用两种或两种 以上焊接方法焊接试件,进行组合评定。 () √ 165.16MnR评定合格的焊接工艺,适用于Q235—A。 () × 166. 20钢评定合格的焊接工艺,适用于10钢。 () √ 167. 凡是不锈钢材料都应该单独进行焊接工艺评定。 () ✓ 168. 当用正火加回火来代替正火处理时,可以不另行进行评定。() × 169. 母材金属厚度为8mm的评定,适用于焊件母材金属厚度的有效范围为 $6\sim12$ mm $_{\circ}$ () \checkmark 170. 影响焊接接头冲击韧度的因素,一律作为焊接工艺评定的重要因素。) X 171. J422焊条评定合格后,可以免做J427焊条的工艺评定。 () 172. 用添丝钨极氩弧焊替代不添丝的钨极氩弧焊时,可以不必再做焊接 工艺评定。() × 173. 用氧丙烷气体替代氧乙炔气体时,可以不必再做焊接工艺评定。 () X 174. 用H08MnA焊丝替代H08A焊丝时,一定要重新进行焊接工艺评定。) 🗸 175. 对接焊缝的焊接工艺评定试件,一定要进行冲击试验。 () × 176. 板厚大于20mm的对接焊缝进行工艺评定时,一定要做侧弯试验。 () \ 177. 焊接工艺评定力学性能试验的试样在去除焊缝余高前,不允许对试 样进行冷矫平。()× 178. 焊接工艺评定进行试样弯曲试验时,弯轴直径应为板厚的3倍。) \ 179. 焊接工艺评定管板组合焊缝试件应切取4个试样。 () ✓ 180. 钢制压力容器上的塞焊缝一定要进行工艺评定。 () × 181. 16MnR钢考试合格的焊工,可以施焊Q235—A钢,而不必另行考试。 () √

- 182. 根据GB / T15169—94《钢熔化焊手焊工资格考试方法》的规定,采用E4303焊条考试合格的焊工,可同时取得E5015焊条的认可。() ×
- 183. 根据GB / T15169—94《钢熔化焊手焊工资格考试方法》的规定,采用E5015焊条考试合格的焊工,可同时取得E4303焊条的认可。
 () √
- 184. 根据GB / T15169—94《钢熔化焊手焊工资格考试方法》中试件代号的规定,字母"P"表示板状试件。 () √
- 185. 根据GB / T15169—94《钢熔化焊手焊工资格考试方法》的规定,板 坡口对接和板角接试件一律应分别进行考试。() ×
- 186. 根据GB / T15169—94《钢熔化焊手焊工资格考试方法》的规定,板 状考试试件的厚度为8mm时,其认可厚度范围为6—12mm。 () ×
- 187. 根据GB / T15169—94《钢熔化焊手焊工资格考试方法》的规定,管板试件应切取4个试样进行宏观金相检查。 ()×
- 188. 根据GB / T15169—94《钢熔化焊手焊工资格考试方法》的规定,对接试件可以只进行无损检验,不进行弯曲试验。 () √
- 189. 根据GB / T15169—94《钢熔化焊手焊工资格考试方法》的规定,试件进行弯曲试验时,如采用辊筒弯曲,其弯轴直径可为试件厚度的4倍。 () √
- 190. 根据《锅炉压力容器焊工考试规则》的规定,埋弧焊考试时不允许加引弧板和引出板。()×
- 191. 根据《锅炉压力容器焊工考试规则》的规定,埋弧焊考试时不允许 清焊根。() √
- 192. 根据《锅炉压力容器焊工考试规则》的规定,焊缝宽度一律用增宽来表示。() ✓
- 193. 根据《锅炉压力容器焊工考试规则》的规定,埋弧焊的焊缝表面咬边深度不得大于0.5mm。()×
- 194. 根据《锅炉压力容器焊工考试规则》的规定,对接试件可以只进行 无损检验,不进行弯曲试验。 () ×
- 195. 根据《锅炉压力容器焊工考试规则》的规定,埋弧焊单面焊试件的 未焊透应在外观检查时评定。 () √
- 196. 根据《锅炉压力容器焊工考试规则》的规定,1Cr18Ni9Ti考试合格后,可免去Q235—A的考试。 () ×
- 197. 焊接材料消耗定额目前大多由经验估算而不是通过计算获得。 () √
- 198. 焊接劳动工时定额中的作业时间由基本时间和辅助时间两部分所组成。() √
- 199. 测量弧焊电源的空载电压主要是为了节省电力。 ()×
- 200. 测定弧焊电源的外特性时,常用可变镇定电阻作为负载。 ()√

二、选择题(共220题)

- 1. 直径为4mm的焊条进行药皮强度检验时,试验高度为()。b
- a. 1m b. 0. 5m c. 1. 5m d. 2m

- 2. 进行焊条药皮耐潮性检验时,应将焊条置于()。b
- a. 空气中 b. 水中 c. 酸液中
- 3. 测定熔敷金属中()的含量,使用较多的是甘油法。d
- a. C0 b. 0 c. N d. 扩散氡
- 4. 检验焊剂颗粒度时,应取试验焊剂不少于()。a
- a. 100g b. 150g c. 200g d. 250g
- 5. 测定实芯焊丝化学成分时,在每批中按盘数任选3%盘,但不少于() 盘。a
- a. 2 b. 3 c. 4 d. 5
- 6. 焊接性试验用得最多的是()。c
- a. 力学性能试验 b. 无损检验 c. 焊接裂纹试验 d. 宏观金相试验
- 7. 碳当量可以用来评定材料的()。b
- a. 耐腐蚀性 b. 焊接性 c. 硬度 d. 塑性
- 8. 钢材的碳当量越大,则其 敏感性也越大。b
- a. 热裂 b. 冷裂 c. 抗气孔 d. 层状撕裂
- 9. 国际焊接学会推荐的碳当量计算公式适用于()。c
- a. 一切钢材 b. 奥氏体不锈钢 c. 500~600MPa级的非调质高强度钢
- d. 硬质合金
- 10. 焊接接头热影响区的最高硬度可用来判断钢材的()。a
- a. 焊接性 b. 耐蚀性 c. 抗气孔性 d. 应变时效
- 11. 斜Y形坡口焊接裂纹试验主要用以试验钢材的()敏感性。b
- a. 热裂 b. 冷裂 c. 层状撕裂 d. 气孔
- 12. 斜Y形坡口焊接裂纹试验用试件的厚度为()。b
- a. $6 \sim 9 \text{mm}$ b. $9 \sim 38 \text{mm}$ c. >38 mm d. 46 mm
- 13. 斜Y形坡口焊接裂纹试验是()焊接接头冷裂纹的自拘束试验方法。b
- a. 奥氏体不锈钢 b. 碳素钢和低合金结构钢 c. 灰铸铁 d. 铜及铜合金
- 14. 斜Y形坡口焊接裂纹试验用焊条直径是()。c
- a. 2.5mm b. 3.2mm c. 4.0mm d. 5.0mm
- 15. 斜Y形坡口焊接裂纹试验拘束焊缝的焊接应采用()b
- a. 酸性焊条 b. 低氢焊条 c. 不锈钢焊条 d. 堆焊焊条
- 16. 斜Y形坡口焊接裂纹试验焊完的试件应在(),进行裂纹的解剖和检测。c
- a. 立即 b. 28h以后 c. 48h以后 d. 几天以后
- 17. 斜Y形坡口焊接裂纹试验应对试件的()个横断面进行断面裂纹检查。c
- a. 3 b. 4 c. 5 d. 6
- 18. 搭接接头(CTS)焊接裂纹试验主要适用于()焊接热影响区由于马氏体转变而引起的焊接裂纹试验。b
- a. 碳素钢 b. 低合金钢 c. 高合金钢 d. 奥氏体不锈钢
- 19. 搭接接头(CTS)焊接裂纹试验用焊条直径为()。c
- a. 2. 5mm b. 3. 2mm c. 4. 0mm d. 5. 0mm
- 20. 搭接接头(CTS)焊接裂纹试验焊完的试件应()进行裂纹的解剖和检

测。c

- a. 立即 b. 24h以后 c. 48h以后 d. 几天以后
- 21. 搭接接头(CTS)焊接裂纹试验应在焊缝上取()试样。d
- a. 3块 b. 4块 c. 5块 d. 6块
- 22. T形接头焊接裂纹试验方法的焊接位置应为()。b
- a. 平角焊 b. 船形焊 c. 横角焊 d. 立角焊
- 23. T形接头焊接裂纹试验方法主要适用于()T形接头角焊缝的裂纹试验。a
- a. 碳素钢 b. 低合金结构钢 c. 铁素体钢 d. 奥氏体不锈钢
- 24. 插销试验属于()试验方法。a
- a. 冷裂纹 b. 热裂纹 c. 应力腐蚀裂纹 d. 层状撕裂
- 25. 试件经预热后进行插销试验时,要保持载荷()。c
- a. 6h b. 12h c. 24h d. 48h
- 26. 插销试验的临界应力值σ gr越小,表示钢材()敏感性越大。a
- a. 冷裂 b. 热裂 c. 消除应力裂纹 d. 应力腐蚀裂纹
- 27. 插销法主要用于评定氡致延迟裂纹中的()。b
- a. 焊趾裂纹 b. 焊根裂纹 c. 焊缝裂纹 d. 焊道下裂纹
- 28. 压板对接(FISCO)焊接裂纹试验方法属于()试验方法。a
- a. 热裂纹 b. 冷裂纹 c. 应力腐蚀裂纹 d. 消除应力裂纹
- 29. Z向拉伸试验是利用试样的()作为评定钢材层状撕裂敏感性的指标。d
- a. 抗拉强度 b. 屈服点 c. 伸长率 d. 断面收缩率
- 30. 根据GB3323《钢熔化焊对接接头射线照相和质量分级》的规定,焊缝质量分为()。b
- a. 三级 b. 四级 c. 五级 d. 六级
- 31. 根据GB3323《钢熔化焊对接接头射线照相和质量分级》的规定,焊缝质量以()为最好。a
- a. I级 b. II级 c. III级 d. IV级
- 32. 根据GB3323—87《钢熔化焊对接接头射线照相和质量分级》的规定,如果焊缝中有裂纹存在,焊缝质量即判定为()d
- a. I级 b. II级 c. III级 d. IV级
- 33. 当检测厚度小T 50mm的焊缝时,应采用()。a
- a. X射线探伤 b. γ射线探伤 c. 超声波探伤 d. 磁粉探伤
- 34. 根据GB11345—89《钢焊缝手工超声波探伤方法和探伤结果分级》中规定,焊缝质量分为()。b
- a. 三级 b. 四级 c. 五级 d. 六级
- 35. 根据GB11345—89《钢焊缝手工超声波探伤方法和探伤结果分级》中规定,焊缝质量等级以一()级为最差。d
- a. I b. II c. III d. IV
- 36. 对于()材料,磁粉探伤将无法应用。d
- a. 纸碳素钢 b. 低合金结构钢 c. 铁磁性材料 d. 非铁磁性材料
- 37. 根据JB / T6061—92《焊缝磁粉检验方法和缺陷磁痕的分级》的规定, 缺陷磁痕的等级分为()。b
- a. 三级 b. 四级 c. 五级 d. 六级

- 38. 根据JB / T6062—92《焊缝渗透检验方法和缺陷迹痕的分级》规定,焊缝质量分为()。a
- a. 四级 b, 五级 c. 六级 d. 七级
- 39. 焊接接头拉伸试验的目的是测定焊接接头的()。a
- a. 抗拉强度 b. 屈服点 c. 伸长率 d. 断面收缩率
- 40. 焊接接头弯曲试验的目的是检验焊接接头拉伸面上的()b
- a. 抗拉强度 b. 塑性 c. 韧性 d. 硬度
- 41. 试样弯曲后, 其正面成为弯曲的拉仲面, 叫()。a
- a. 面弯 b. 背弯 c. 侧弯 d. 纵弯
- 42. 试样弯曲后, 其背面成为弯曲的拉伸面, 叫()。b
- a. 面弯 b. 背弯 c. 侧弯 d. 纵弯
- 43. 采用圆形压头弯曲(三点弯曲)试验法时,弯轴直径应为试样厚度的()倍。b
- a. 2 b. 3 c. 4 d. 5
- 44. 根据GB2653—89《焊接接头弯曲及压扁试验方法》的规定,弯曲试样 拉伸面上有()的横向(焊缝的纵向)裂纹或缺陷,弯曲试验就为不 合格。a
- a. 1. 5mm b. 3mm c. 3. 5mm d. 4mm
- 45. 弯曲直径通过两支持辊被弯曲接近U形时,则认为弯曲角度达到()。 d
- a. 50° b. 90° c. 120° d. 180°
- 46. 焊接接头应变时效敏感性试验方法同()。c
- a. 拉伸试验 b. 弯曲试验 c. 冲击试验 d. 压扁试验
- 47. 目前,冲击试验试样的缺口形状均为()。a
- a. V形 b. U形 c. X形 d. Y形
- 48. 焊接接头及堆焊金属的硬度试验应在其()上进行。a
- a. 横断面 b. 纵断面 c. 焊缝表面 d. 焊缝根部
- 49. 压扁试验的目的是测定 焊接对接接头的塑性。c
- a. 平板 b. 管板 c. 管子 d. 型钢
- 50. 压扁试验的目的是测定管子焊接对接接头的()。d
- a. 强度 b. 硬度 c. 韧性 d. 塑性
- 51. 压力容器进行水压试验时,其试验压力应为工作压力的()b
- a. 1倍 b. 1.25倍 c. 1.5倍 d. 2倍
- 52. 水压试验时,应装设()定期校验合格的压力表。b
- a. 1只 b. 2只 c. 3只 d. 4只
- 53. 钢制压力容器进行气压试验前需经100%()。d
- a. 超声波探伤 b. 磁粉探伤 c. 着色探伤 d. X射线探伤
- 54. 焊接容器的煤油试验属于()。b
- a. 液压试验 b. 密封性检验 c. 气密性检验 d. 气压试验
- 55. 奥氏体不锈钢与珠光体钢焊接时,最好焊缝中不要出现()组织。c
- a. 铁素体 b. 珠光体 c. 马氏体 d. 奥氏体
- 56. 奥氏体不锈钢与珠光体钢焊接时,要尽量()熔合比。b
- a. 增加 b. 减小 C. 越大越好 d. 适当增加
- 57. 奥氏体不锈钢与珠光体钢焊接时,采用最多的焊接方法是()。c

- a. 钨极氩弧焊 b. 埋弧焊 c. 焊条电弧焊 d. CO2气体保护焊
- 58. 1Cr18Ni9Ti 奥氏体不锈钢与Q235-A低碳素钢焊接时,应采用的焊条牌号是()。c
- a. A102 b. A202 c. A302 d. A402
- 59. 1Cr18Ni9Ti 奥氏体不锈钢和Q235-A低碳素钢采用手工钨极氩弧焊焊接时,如不加填充焊丝,则焊缝中不可避免地会出现()组织。a
- a. 马氏体 b. 珠光体 c. 奥氏体 d. 铁素体
- 60. 1Cr18Ni9Ti 奥氏体不锈钢与Q235-A低碳素钢焊接时,如果采用A407焊条,焊缝中容易产生()。a
- a. 热裂纹 b. 冷裂纹 c. 腐蚀裂纹 d. 层状撕裂
- 61. 奥氏体不锈钢与珠光体钢焊接时,为控制熔合区中C的扩散,应当提高焊缝中()的含量。b
- a. Cr b. Ni c. Mn d. N
- 62. 为改变奥氏体不锈钢与珠光体钢焊接时焊接接头的应力分布状态,最好选用线膨胀系数接近于珠光体钢的()填充材料。c
- a. 钴基合金型 b. 钛基合金型 c. 镍基合金 d. 铁基合金型
- 63. 奥氏体不锈钢与珠光体钢焊接时,为能得到具有较高抗热裂性能的奥氏体+铁素体双相组织,应将熔合比控制在以下。c
- a. 20% b. 30% c. 40% d. 50%
- 64. 奥氏体不锈钢与珠光体钢焊接时,为减小熔合比,应尽量使用()焊接。b
- a. 大电流、高电压 b. 小电流、高电压 c. 大电流、低电压 d. 小电流、低电压
- 65. 奥氏体不锈钢与珠光体耐热钢焊接时,应选用()焊接材料。c
- a. 低合金耐热钢 b. 奥氏体钢 c. 镍基型 d. 钴基型
- 66. 奥氏体不锈钢与铁素体钢焊接时应选用()焊条。 d
- a. A102 b. A107 c. A302 d. A022
- 67. 15CrMo珠光体耐热钢与Q235-A低碳素钢焊接时,应选用焊条()。d
- a. R302 b. R307 c. A102 d. J507
- 68. 珠光体耐热钢与低合金结构钢焊接时,应根据()的要求选择预热温度。b
- a. 低合金结构钢 b. 珠光体耐热钢 c. 两者中较低的预热温度
- d. 两者中较高的预热温度
- 69. 珠光体耐热钢与低合金结构钢焊接时,应根据()的要求选择焊后热处理温度。b
- a. 低合金结构钢 b. 珠光体耐热钢 c. 两者中较低的焊后热处理温度
- d. 两者中较高的焊后热处理温度
- 70. 珠光体耐热钢与马氏体耐热钢焊接时,焊接接头中极易形成()。b
- a. 热裂纹 b. 冷裂纹 c. 消除应力裂纹 d. 层状撕裂
- 71. 珠光体耐热钢与马氏体耐热钢焊接时,焊前预热和控制层间温度的目的是预防()。a
- a. 冷裂纹 b. 热裂纹 c. 腐蚀裂纹 d. 消除应力裂纹
- 72. 珠光体耐热钢与马氏体耐热钢焊接时,应选用()。b
- a. 不锈钢焊条 b. 耐热钢焊条 c. 结构钢焊条 d. 低温钢焊条

- 73. 钢与铜及其合金焊接时的主要问题是在焊缝及熔合区容易产生()。 a
- a. 裂纹 b. 气孔 c. 夹渣 d. 未焊透
- 74. 钢与铜及其合金焊接时,焊缝中产生的裂纹属于()a
- a. 热裂纹 b. 冷裂纹 c. 消除应力裂纹 d. 层状撕裂
- 75. 纯铜与低碳素钢焊接时,可以采用()作为填充金属材料。d
- a. 低碳素钢 b. 不锈钢 c. 黄铜 d. 纯铜
- 76. 钢与镍及其合金焊接时的主要问题是在焊缝中容易产生()a
- a. 气孔和裂纹 b. 夹渣和未焊透 c. 未熔合和未焊透 d. 咬边
- 77. 钢与铝及其合金焊接时采用的焊接方法是()。d
- a. 焊条电弧焊 b. 钨极氩弧焊 c. 埋弧焊 d. 冷压焊
- 78. 焊接接头热影响区内强度高、塑性低的区域是()。c
- a. 熔合区 b. 正火区 c. 加热在1200℃的粗晶区 d. 整个热影响区
- 79. 低碳素钢热影响区的脆化区是指加热温度在()的区域。a
- a. 200~400℃ b. >400℃ c. <200℃ d。熔合区
- 80. 高强度钢热影响区的脆化区是指加热温度在()的区域。b
- a. >1200°C b. $Ac1 \sim Ac3$ c. >Ac3 d. <Ac1
- 81. 低合金结构钢中,含有较多的()时,极易发生热应变脆化现象。d
- a. 冷裂纹 b. 热裂纹 c. 腐蚀裂纹 d. 消除应力裂纹
- 82. 承受动载荷的角焊缝,其截面形状以()承载能力最低。b
- a. 凹形 b. 凸形 c. 等腰平形 d. 不等腰平形
- 83. 焊接结构中最理想的接头形式是()。d
- a. T形接头 b. 搭接接头 c. 角接接头 d. 对接接头
- 84. 应力集中最小的接头形式是()。a
- a. 对接接头 b. T形接头 c. 搭接接头 d. 角接接头
- 85. 对接接头的应力集中出现在()。d
- a. 焊缝最高点 b. 焊缝根部 c. 熔合K d. 焊趾
- 86. 承受动载荷的对接接头,焊缝的余高应()。b
- a. 越大越好 b. 趋向于零 c. 0~3mm之间 d. 没有要求
- 87. 疲劳强度最高的接头形式是()。a
- a. 对接接头 b. T形接头 c. 搭接接头 d. 角接接头
- 88. T形接头降低应力集中的重要措施是()。c
- a. 减小焊脚尺寸 b. 增大焊脚尺寸 c. 开坡口保证焊透 d. 采用碱性焊条
- 89. 搭接接头增添正面角焊缝会使()。b
- a. 侧面角焊缝的应力集中增加 b. 侧面角焊缝应力集中减小
- c. 对应力集中无影响
- 90. 应力集中对结构的()影响不大。c
- a. 疲劳强度 b. 动载强度 c. 静载强度
- 91. 对接接头进行强度计算时, ()接头上的应力集中。c
- a. 应该考虑 b. 载荷大时要考虑 c. 不予考虑 d. 精确计算时要考虑
- 92. 对接接头进行强度计算时, ()焊缝的余高。c

- a. 应该考虑 b. 载荷大时要考虑 c. 不需考虑 d. 精确计算时要考虑
- 93. 和铆接结构相比较,焊接结构的特点之一是()。c
- a. 强度高 b. 塑性好 c. 刚度高 d. 抗腐蚀性能好
- 94. 焊接结构的整体性给()的扩展创造了十分有利的条件。a
- a. 裂纹 b. 气孔 c。未焊透 d. 未熔合
- 95. 焊接结构的失效大部分是由()引起的。b
- a. 气孔 b. 裂纹 c. 夹渣 d. 咬边
- 96. 焊接接头脆性断裂的特征是破坏应力()设计的许用应力。d
- a. 远远大于 b. 接近T c. 略大于 d. 远远小于
- 97. 延性断裂的裂口一般呈()。c
- a. 金属光泽 b. 有亮光 c. 纤维状
- 98. 脆性断裂的裂口一般呈()。a
- a. 金属光泽 b. 有亮光 c. 纤维状
- 99. 当焊接结构承受()时,容易产生脆性断裂。c
- a. 单向拉应力 b. 双向拉应力 c. 三向拉应力 d. 压应力
- 100. 焊接结构上的缺口处往往会形成局部(),导致脆性断裂。c
- a. 单向拉应力 b. 双向拉应力 c. 三向拉应力 d. 压应力
- 101. 通常, ()往往起源于有严重应力集中效应的缺口处。b
- a. 延性断裂 b. 脆性断裂 c. 疲劳断裂
- 102. 脆性转变温度越高,材料的脆性倾向()。b
- a. 越小 b. 越大 c. 无影响
- 103. 提高加载速度能促使材料发生()。a
- a. 脆性断裂 b. 延性断裂 c. 疲劳断裂
- 104. 厚板在缺口处容易形成三向拉应力,因此容易使材料().a
- a. 脆化 b. 塑性增加 c. 疲劳
- 105. 低碳素钢和低合金钢的晶粒度越细,则其脆性转变温度()。c
- a. 无影响 b. 越高 c. 越低
- 106. 利用转变温度法进行焊接接头抗脆性断裂试验时, 所用的试样为 ()。c
- a. 拉伸试样 b. 弯曲试样 c. 冲击试样 d. 压扁试样
- 107. "落锤试验法"用来测定材料的()。b
- a. 抗拉强度 b. 脆性转变温度 c. 疲劳强度 d. 塑性
- 108. 焊接结构的应变时效会导致()下降。b
- a. 抗拉强度 b. 冲击韧度 c. 屈服点 d. 硬度
- 109. 钢对应变时效的敏感性,常用时效前后()之差与原始状态的百分比来表示。a
- a. 冲击值 b. 弯曲角 c. 屈服点 d. 硬度
- 110. 低合金结构钢焊接时,过大的焊接热输入会降低接头的()。c
- a. 硬度 b. 抗拉强度 c. 冲击韧度 d. 疲劳强度
- 111. 焊接接头中的角变形和错边都会引起附加(),因此对结构脆性破坏有影响。c
- a. 拉应力 b. 压应力 c. 弯曲应力
- 112. 如果焊接结构在材料的脆性转变温度以上工作时,焊接残余应力对

脆性断裂的影响()。c

- a. 最大 b. 较大 c. 不大
- 113. 不同厚度构件应尽可能圆滑过渡,其目的是为了减少,提高抗脆断能力。b
- a. 焊接缺陷 b. 应力集中 c. 焊接材料
- 114. 焊接容器上两条相邻焊缝应保持最小距离, 其目的是防止焊缝间() 相叠加, 产生脆断。a
- a. 残余拉应力 b. 残余压应力 c. 焊接缺陷 d. 焊接残余变形 115. 对于要求抗脆性断裂的材料,通常用()值作为材料的验收指标。
- a. 抗拉强度 b. 屈服点 c. 硬度 d. 冲击韧度
- 116. 焊接结构承受()时,容易产生疲劳断裂。d
- a. 较大的拉应力 b. 较大的压应力 c. 较大的弯曲应力 d. 交变应力
- 117. 据统计,焊接结构的失效大多是由于()引起的。 a
- a. 疲劳断裂 b. 脆性断裂 c. 延性断裂 乙腐蚀断裂
- 118. 焊接结构的疲劳极限()材料的强度极限。d
- a. 大大高于 b. 高于 c. 接近 d. 低于
- 119. 由反复塑性变形所造成的破坏叫()。a
- a. 低周疲劳 b. 热疲劳 c. 腐蚀疲劳
- 120. 由于热应力反复作用而产生的破坏叫()。b
- a. 低周疲劳 b. 热疲劳 c. 腐蚀疲劳
- 121. 在循环载荷和腐蚀介质的共同作用下,焊接结构所产生的破坏称为()。c
- a. 低周疲劳 b. 热疲劳 c. 腐蚀疲劳
- 122. 各种金属材料中,以()抗腐蚀疲劳的性能最好。c
- a. 低碳素钢 b. 低合金结构钢 c. 不锈钢 d. 耐热钢
- 123. 焊接接头的应力集中将显著降低接头的()。c
- a. 抗拉强度 b. 冲击韧度 c. 疲劳强度 d. 抗弯强度
- 124. 失效结构的断口上若有放射棱线,则放射棱线的放射中心为()。a
- a. 裂纹源 b. 气孔源 c. 未熔合部位 d. 未焊透部位
- 125. 失效结构的断口上两组"人"字形纹路的汇合处则是()a
- a. 裂纹源 b. 气孔源 c. 未熔合部位 d. 未焊透部位
- 126. 失效结构上若有疲劳裂纹,则裂纹源通常是在疲劳裂纹的曲率()。c
- a. 边缘 b. 端部 c. 中心点
- 127. 失效结构的断口四周外缘除一处外都有剪切唇,则无剪切唇处一般为()。c
- a. 气孔源 b. 未熔合部位 c。裂纹源 d. 未焊透部位
- 128. 根据GB / T15169—94《钢熔化焊手焊工资格考试方法》的规定,板 试件以字母()表示。b
- a. T b. P c. G d. F
- 129. 根据GB / T15169-94《钢熔化焊手焊工资格考试方法》的规定,管

子试件以字母()表示。a

- a. T b. P c. G d. F
- 130. 根据GB, rI'15169—94《钢熔化焊手焊工资格考试方法》的规定,试件代号PGF中的F表示()。a
- a. 平焊 b. 立焊 c. 横焊 d. 仰焊
- 131. 根据GB / T15169—94《钢熔化焊手焊工资格考试方法》的规定,试件代号PF0中的0表示()。d
- a. 平焊 b. 立焊 c. 横焊 d. 仰焊
- 132. 根据GB/T15169-94《钢熔化焊手焊工资格考试方法》的规定,试件代号PFV表示()。 c
- a. 船形焊 b. 平角焊 c. 立角焊 d。仰角焊
- 133. 根据GB / T15169—94《钢熔化焊手焊工资格考试方法》的规定,试件代号TPFA表示()。a
- a. 全位置管板焊接 b. 垂直水平固定管板焊接
- c. 垂直仰位固定管板焊接 d. 管子45°倾斜位置固定对接
- 134. 根据GB / T15169—94《钢熔化焊手焊工资格考试方法》的规定,试件代号TGAi表示()。d
- a. 管子水平固定对接 b. 管子水平转动对接 c. 管子垂直固定对接 d. 管子45°倾斜位置固定对接
- 135. 根据GB / T15169—94《钢熔化焊手焊工资格考试方法》的规定,考试试板厚度为10mm,则其认可厚度范围为()。d
- a. $6 \sim 10 \text{mm}$ b. $10 \sim 20 \text{mm}$ c. >20 mm d. $6 \sim 20 \text{mm}$
- 136. 根据GB / T15169—94《钢熔化焊手焊工资格考试方法》的规定,产品为Φ76mm×4mm的管子对接,则考试管的尺寸应为()。a
- a. Φ 60mm \times 5mm b. Φ 89mm \times 4mm c. Φ 108mm \times 6mm d. Φ 273mm \times 10mm
- 137. 根据GB / T15169—94《钢熔化焊手焊工资格考试方法》的规定,考试材料为16Mng,则适应认可的材料为()。d
- a. Q235—A b. ICr18Ni9Ti c. 1Cr17 d. 18MnMoNb
- 138. 根据GB / T15169—94《钢熔化焊手焊工资格考试方法》的规定,考试焊条为E5015,则认可的焊条类型为()。b
- a. E5010 b. E4303 c. E4310 d. E4311
- 139. 根据GB / T15169—94《钢熔化焊手焊工资格考试方法》的规定,考试焊条为E4303,则认可的焊条类型为()。a
- a. E4320 b. E5015 c. E5048 d. E6010
- 140. 根据GB / T15169—94《钢熔化焊手焊工资格考试方法》的规定, 角焊缝试件两端应弃去()不做检查。b
- a. 10mm b. 20mm c. 30mm d. 40mm
- 141. 根据GB / T15169—94《钢熔化焊手焊工资格考试方法》的规定,试件焊缝余高的合格值在平焊位置应为()。c
- a. $0 \sim 1 \text{mm}$ b. $0 \sim 2 \text{mm}$ c. $0 \sim 3 \text{mm}$ d. $0 \sim 4 \text{mm}$
- 142. 根据GB / T15169—94《钢熔化焊手焊工资格考试方法》的规定,试件焊缝余高的合格值在立焊位置应为()。d
- a. $0 \sim imm$ b. $0 \sim 2mm$ c. $0 \sim 3mm$ d. $0 \sim 4mm$

- 143. 根据GB / T15169—94《钢熔化焊手焊工资格考试方法》的规定,当弯曲试样采用辊筒弯曲试验方法时,弯轴直径应为试板厚度的()。c
- a. 2倍 b. 3倍 c. 4倍 d. 5倍
- 144. 根据GB / T15169—94《钢熔化焊手焊工资格考试方法》的规定,板 状试件的错边量应≤()板厚。a
- a. 10% b. 15% c. 20% d. 25%
- 145. 根据《锅炉压力容器焊工考试规则》的规定,考试材料为16MnR,适用的产品材料为()。d
- a. 1Cr5Mo b. 1Cr18Ni9Ti c. 1Cr23Ni18 d. Q235—A
- 146. 根据《锅炉压力容器焊工考试规则》的规定,产品板厚为60mm,采用埋弧焊,则考试试板的厚度应为()。d
- a. 3~6mm b. 10~16mm c. 16~24mm d. d≥24mm
- 147. 根据《锅炉压力容器焊工考试规则》的规定,产品为Φ76mm×4mm的管子水平转动对接,采用钨极氩弧焊,则考试试管的规格应为()。c
- a. Φ 108mm \times 4mm b. Φ 133mm \times 6mm c. Φ 42mm \times 3.5mm d. Φ 273mm \times 10mm
- 148. 根据《锅炉压力容器焊工考试规则》的规定,埋弧焊采用I形坡口考试时,()清焊根。b
- a. 允许 b. 不允许 c. 厚板允许
- 149. 根据《锅炉压力容器焊工考试规则》的规定,埋弧焊板状试件()。 d
- a. 允许的咬边深度为0.5mm b. 允许的咬边深度为1mm
- c. 允许的咬边深度为1.5mm d. 不允许有咬边
- 150. 根据《锅炉压力容器焊工考试规则》的规定,埋弧焊试件当试板厚度为28mm时,其焊缝余高的合格标准为()。d
- a. $0 \sim 1 \text{mm}$ b. $0 \sim 2 \text{mm}$ c. $0 \sim 3 \text{mm}$ d. $0 \sim 4 \text{mm}$
- 151. 根据《锅炉压力容器焊工考试规则》的规定,()用无损检验来代替弯曲试验。b
- a. 可以 b. 不可以 c. 必要时可以 d. 厚板可以
- 152. 根据《锅炉压力容器焊工考试规则》的规定,埋弧焊板状试件焊缝 比坡口每侧增宽应为()。d
- a. $1 \sim 2 \text{mm}$ b. $2 \sim 3 \text{mm}$ c. $3 \sim 4 \text{mm}$ d. $2 \sim 4 \text{mm}$
- 153. 根据《锅炉压力容器焊工考试规则》的规定, Φ159mm×8mm管子对接采用钨极氩弧焊时,背面焊缝余高应不大于()c
- a. 1mm b. 2mm c. 3mm d. 4mm
- 154. 根据《锅炉压力容器焊工考试规则》的规定,钨极氩弧焊时,()未焊透。d
- a. 允许有深度0.5mm的 b. 允许有深度1.5mm的
- c. 允许有深度2mm的 d. 不允许有
- 155. 根据《锅炉压力容器焊工考试规则》的规定,埋弧焊板状试件焊后角变形的角度应小于()。c
- a. 1° b. 2° c. 3° d. 4°

- 156. 根据《锅炉压力容器焊工考试规则》的规定,埋弧焊板状试件的射线探伤应符合GB3323-87《钢熔化焊对接接头射线照相和质量分级》的()为合格。b
- a. I级 b. II级 c. III级 d. IV级
- 157. 根据《锅炉压力容器焊工考试规则》的规定,试管断口检验时,断口上应没有()。d
- a. 夹渣 b. 气孔 c. 未焊透 d. 裂纹和未熔合
- 158. 根据《锅炉压力容器焊工考试规则》的规定,弯曲试样因焊接缺陷引起的棱角开裂()。b
- a. 可以不计 b. 应予评定 c. 缺陷长度小于1. 5mm时予以评定
- d. 缺陷长度大于3mm时予以评定
- 159. 根据《锅炉压力容器焊工考试规则》的规定, Q345(16Mn)钢双面埋 弧焊弯曲试样弯曲角度的合格标准为()。b
- a. 180° b. 100° c. 90° d. 50°
- 160. 根据《锅炉压力容器焊工考试规则》的规定,埋弧焊考试弯曲试样的试验结果,()为合格。a
- a. 两个弯曲试样均合格
- b. 两个弯曲试样均不合格, 但经复试后均合格
- c. 一个弯曲试样不合格, 经复试后不合格
- 161. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,焊接工艺评定应由()焊接试样。b
- a. 合格焊工 b. 本单位技术熟练的焊工 c. 必要时可由外单位技术熟练的焊工
- 162. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,对接焊缝 试件评定合格的焊接工艺()角焊缝。a
- a. 适用于 b. 不适用 c. 对碳素钢适用 d. 对不锈钢不适用
- 163. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,组合焊缝是指()。a
- a. 角焊缝加对接焊缝 b. 角焊缝加端接焊缝
- c. 对接焊缝加端接焊缝 d. 端接焊缝加塞焊缝
- 164. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,补加因素 是指影响焊接接头()的焊接工艺因素。c
- a. 抗拉强度 b. 弯曲性能 c. 冲击韧度 d. 疲劳强度
- 165. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,重要因素是指影响焊接接头()的焊接工艺因素。a
- a. 抗拉强度和弯曲性能 b. 冲击韧度 c. 疲劳强度 d. 硬度
- 166. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定, Q235—A评 定合格的焊接工艺适用于()的焊接工艺。b
- a. Q345 b. 20g c. 1Cr18Ni9Ti d. 0G13
- 167. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定, Q345评定 合格的焊接工艺适用于()所组成的焊接接头。c
- a. Q345 + 15CrMo b. Q345+1Cr18Ni9Ti c. Q345+Q235 Ad. Q345+18MnMoNbR
- 168. 根据JB4708-92《钢制压力容器焊接工艺评定》的规定, 试件母材

- 金属厚度为12mm,适用于焊件母材金属厚度的有效范围为()。c
- a. $6 \sim 12 \text{mm}$ b. $9 \sim 14 \text{mm}$ c. $9 \sim 18 \text{mm}$ d. $12 \sim 24 \text{mm}$
- 169. 根据JB4708—92《钢制压力容器焊接工艺评定》的规格,试件母材金属厚度为6mm,适用于焊件母材金属厚度的有效范围为()。a
- a. 1. $5 \sim 12 \text{mm}$ b. $6 \sim 12 \text{mm}$ c. $8 \sim 14 \text{mm}$ d. $4 \sim 9 \text{mm}$
- 170. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,板材对接焊缝评定合格的焊接工艺()管材对接焊缝。b
- a. 不适用于 b. 适用于 c. 适用于小直径 d. 适用于大直径
- 171. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,焊条电弧焊时,用J442焊条代替J427焊条时,需()。a
- a. 重新评定 b. 大直径焊条时重新评定 c. 小直径焊条时重新评定
- d. 不用重新评定
- 172. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,埋弧焊时,用H08MnA焊丝代替H08A焊丝,()。b
- a. 不需重新评定 b. 需重新评定 c. 小直径焊丝时需重新评定
- d. 大直径焊丝时需重新评定
- 173. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,埋弧焊时电流种类或极性属于()。c
- a. 重要因素 b. 补加因素 c. 次要因素
- 174. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,板材组合焊缝试件两端应弃去()。d
- a. 10mm b. 15mm c. 20mm d. 25mm
- 175. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,管板组合焊缝的试件规格为??60mmX 5mm+812,适用于焊件母材金属厚度的有效范围为()。d
- a. 管壁厚度和板厚度均小于5mm
- b. 管壁厚度和板厚均小于12mm
- c. 管壁厚度和板厚均小于17mm
- d. 管壁厚度和板厚均小于20mm
- 176. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,对接焊缝 试件和试样的检验项目有外观检查、()和力学性能试验。b
- a. 磁粉探伤 b. 无损检验 c. 疲劳试验 d. 耐压试验
- 177. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,当试件母材金属的厚度大于20mm时,应进行()。d
- a. 冲击试验 b. 面弯试验 c. 背弯试验 d. 侧弯试验
- 178. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定, Q345钢弯曲试验的弯曲角度当焊接工艺为单面焊时应为()d
- a. 180° b. 100° c. 90° d. 50°
- 179. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,20R钢弯曲试验的弯曲角度当焊接工艺为双面焊时应为()a
- a. 180° b. 100° c. 90° d. 50°
- 180. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,管板角焊缝试样应将试件等分切取()试样。b
- a. 3个 b. 4个 c. 5个 d. 6个

- 181. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,管板角焊缝试样两焊脚尺寸之差应不大于()。c
- a. imm b. 2mm c. 3mm d. 4mm
- 182. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,管板组合焊缝的试件外观检查时不得有()。d
- a. 气孔 b. 夹渣 c. 咬边 d. 裂纹和未熔合
- 183. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,板材组合焊缝试件翼板和腹板厚度均为16mm。则适用于母材金属厚度的有效范围,翼板和腹板厚度均小于()。b
- a. 16mm b. 20mm c. 22mm d. 24mm
- 184. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,板材角焊缝试件翼板和腹板厚度均为16mm,则焊脚尺寸应为()。b
- a. <16mm b. 16~20mm c. >20mm d. 无要求
- 185. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,组合焊缝的试件与角焊缝试件的区别是前者试件()。c
- a. 管壁较厚 b. 板太厚 c. 开带角度坡口、有利于焊透 d. 开I 形坡口
- 186. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,当焊件预 热温度下限比评定合格值降低40℃时,()焊接工艺。b
- a. 需要重新评定 b. 不需要重新评定
- c. 合金钢时需要重新评定 d. 碳素钢时需要重新评定
- 187. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,当焊接接 头有冲击韧度要求时,焊接热输入属于()。b
- a. 重要因素 b. 补加因素 c. 次要因素
- 188. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,在所有焊接方法中,坡口形式均属于()。b
- a. 重要因素 b. 次要因素 c. 补加因素
- 189. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,耐蚀堆焊层的试验项目有:()、弯曲试验、化学成分分析。c
- a. X射线探伤 b. 超声波探伤 c. 渗透探伤 d. / 射线探伤
- 190. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,为了测定组合焊缝接头的力学性能,可采用组合焊缝加试件。b
- a. 角焊缝 b. 对接焊缝 c. 端接焊缝 d. 塞焊缝
- 191. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,母材金属厚度为38mm时,应选用()。c
- a. 超声波探伤 b. 渗透探伤 c. 射线探伤 d. 磁粉探伤
- 192. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,有衬垫的 1Cr18Ni9Ti 奥氏体不锈钢单面焊进行弯曲试验时,其弯曲角度应为 ()。a
- a. 180° b. 100° c. 90° d. 50°
- 193. 根据JB4708—92《钢制压力容器焊接工艺评定》的规定,板材角焊缝试样进行宏观金相检验时,应沿试件横向等分切取()试样。c
- a. 3个 b. 4个 c. 5个 d. 6个
- 193. ()多用于管接头与壳体的连接。d

- a. 对接接头 b. T型接头 c. 搭接接头 d. 角接接头
- 194. 筒节的拼接纵缝, 封头瓣片的拼接缝, 半球形封头与筒体、接管相接 的环缝等属于()接头。a
- a. A类 b. B类 b. C类 d. D类
- 195. B类接头的工作应力是A类接头工作应力的()。c
- a. 2倍 b. 3倍 c. 1/2 d. 1/3
- 196. 用于照料工作地,以保持工作地处于正常工作状态所需要的时间是 ()。 c
- a. 基本时间
- b. 辅助时间
- c. 布置工作地时间 d. 准备、结束时间
- 197. 焊接基本时间与()成反比。c
- a. 焊缝横截面积b. 焊缝长度c. 焊接电流d. 焊条金属密度
- 198. 二次结晶的组织和性能与()有关。a
- a. 冷却速度 b. 冷却方式 c. 冷却介质 d. 冷却时间
- 200. 不易淬火钢的()区为热影响区中的薄弱区域。b
- a. 正火 b. 过热 c. 部分相变 d. 再结晶
- 201. ()区是不易淬火钢热影响区中综合性能最好的区域。b
- a. 过热 b. 正火 c. 部分相变 d. 再结晶
- 202. 易淬火钢热影响区的组织分布与()有关。d
- a. 化学成分 b. 冷却速度
- c. 焊接方法 d. 母材焊前热处理状态
- 203. 熔渣中同时具有脱硫、脱磷效果的成分是()。b
- a. MnO b. CaO c. FeO d. CaF2
- 204. C02气体保护焊,最常出现的是()气孔。c
- a. 氢气 b. 一氧化碳 c. 氮气 d. 氧气
- 205. C02气体保护焊时若保护不良或C02气体不纯,会在焊缝中产生()C
- a. 氢气孔 b. 一氧化碳气孔 c. 氮气孔 d. 氧气
- 206. CO2气体保护焊的电弧静特性曲线是()的。a
- a. 上升 b. 缓降 c. 平硬 d. 陡降
- 207. C02气体保护焊,采用()的外特性电源,电弧的自身调节作用最好。 C
- a. 上升 b. 缓降 c. 平硬 d. 陡降
- 208. 利用热影响区最高硬度法评定冷裂纹敏感性时,应该采用()硬度。 b
- a. 布氏 b. 维氏 c. 洛氏
- 209. 气孔的分级是指照相底片上的任何()的焊缝区域内气孔的点数。C
- a. $5 \times 10 \text{mm}2$ b. $50 \times 10 \text{mm}2$
- c. $10 \times 50 \text{mm}2$ d. $10 \times 10 \text{mm}2$
- 210. 断口检验方法对焊缝中的()缺陷十分敏感。b
- a. 气孔 b. 未熔合 c. 裂纹 d. 夹渣
- 211. 铸铁与低碳钢钎焊时,用()可以提高钎焊强度及减少锌的蒸发。B
- a. 中性焰 b. 氧化焰
- c. 碳化焰 d. 轻微碳化焰

- 212. 铜与钢焊接时,由于膨胀系数相差很大,故容易发生()。a
- a. 焊缝热裂纹 b. 延迟裂纹
- c. 再热裂纹 d. 冷裂纹
- 213. ()接头是压力容器中受力最大的接头。a
- a. A类 b. B类 c. C类 d. D类
- 214. 焊前焊件坡口边缘的检查与清理时间属于()时间。b
- a. 机动 b. 与焊缝有关的辅助 c. 与工件有关的辅助 d.准备
- 215. 当零件外形有平面也有曲面时,应选择()作为装配基准面。a
- a. 平面 b. 曲面 c. 凸曲面 d. 凹曲面
- 216. ()是将压缩空气压入焊接容器,利用容器内外的压差检验泄漏的 试验方法。c
- a. 煤油渗漏试验 b. 耐压检验 c. 气密性检验 d. 气压检验
- 217. ()过程中,会使导热性差的工件表面产生裂纹。B
- a. 车削 b. 磨削 c. 铣削 d. 刨削
- 218. 钛与钛合金焊接产生的气孔主要是()。d
- a. 氩气孔b. 氮气孔c. 水蒸气反应气孔d. 氢气孔
- 219. 焊缝角变形沿长度上的分布不均匀和焊件的纵向有错边,则往往会产 生()。d
- a. 角变形 b. 错边变形
- c. 波浪变形 d. 扭曲变形
- 220. ()不适用于焊接淬硬性较高的材料。d
- a. 自重法 b. 反变形法
- c. 对称焊法 d. 散热法